Now, a tangent function is an odd function, and you can find the proof on the internet, so we can say that: [tex]f(-x) = -f(x)[/tex] [tex]tan(-x) = -tan(x)[/tex] [tex]tan(-\frac{\pi}{12}) = -tan(\frac{\pi}{12})[/tex]
Now, we just need to find what [tex]tan(\frac{\pi}{12})[/tex] is. Since [tex]\frac{\pi}{12}[/tex] is not an exact angle, we need to manipulate it in some way that it will be yield exact values.
Thus, we can say: [tex]-tan(\frac{\pi}{12}) = -tan(\frac{\pi}{3} - \frac{\pi}{4})[/tex]
Using difference formula to simplify the expression, we know that the difference formula states: [tex]tan(A - B) = \frac{tanA - tanB}{1 + tanA \cdot tanB}[/tex] [tex]-tan(\frac{\pi}{3} - \frac{\pi}{4}) = -\frac{tan(\frac{\pi}{3} - tan(\frac{\pi}{4})}{1 + tan(\frac{\pi}{3}) \cdot tan(\frac{\pi}{4})}[/tex]
The exact value for [tex]tan(\frac{\pi}{3}) = \sqrt{3}[/tex] The exact value for [tex]tan(\frac{\pi}{4}) = 1[/tex]